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Abstract. We evaluate the limit distribution of the maximal excursion of a random walk in any
dimension for homogeneous environments and for self-similar supports under the assumption of
spherical symmetry. This distribution is obtained in closed form and is an approximation of the
exact distribution comparable to that obtained by real space renormalization methods. We then
focus on the early time behaviour of this quantity. The instantaneous diffusion exponentνn exhibits
a systematic overshooting of the long-time exponent. Exact results are obtained in one dimension
up to third order inn−1/2. In two dimensions, on a regular lattice and on the Sierpiński gasket we
find numerically that the analytic scalingνn ' ν +An−ν holds.

The random walk (RW) on a lattice has long been studied due to its widespread applications
in mathematics, physics, chemistry and other research areas. It turns out that despite
the huge amount of accomplished work, it still remains a thriving research topic. Many
results can be obtained in the continuum limit (Brownian motion) but results for RW on
a lattice often yield drastically different behaviour—as it is the case for the winding angle
distribution [1]—or, at least, unusual finite-time convergence properties. In the present work
we investigate a central quantity for RW, the maximal excursion from the origin at timen,
Mn = max(‖xm‖, 0 6 m 6 n). This random variable is of great interest in many practical
purposes such as the control of pollution spread, propagation ranges of epidemics, tracer
displacement in fluids, the radius of gyration of polymer chains [2,3], or of lattice animals [4,5]
or other extremal statistics. A great deal of work was devoted to the first-passage time (FPT)
statistics which is a closely related quantity. Nevertheless, methods used to find the exact
FPT distribution in one-dimensional inhomogeneous environments [6–9] do not help us to
get a closed form of the exact distribution ofMn. Except for the one-dimensional case, only
the leading-order asymptotic expressions (asn → ∞) are available. It was proved long ago
by Erd̋os and Kac [10], that in this limit the distribution ofMn coincides with that of the
Brownian motion. This result appears as some kind of a central limit theorem. However,
it does not deal with centred, reduced variables. Moreover, it offers no practical access (for
physically motivated purposes) to the convergence speed towards the limit law. The only global
estimates available forMn are the laws of iterated logarithm of Khinchine and Chung [11] for
the one-dimensional RW, claiming that although all the distributions have the same limit form,
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the intrinsic uncertainty onMn increaseswith n. Hence, it is not clear what the finite-time
behaviour of the maximal excursionMn is. It is our aim to clarify this point.

In this paper, we first derive the leading order expression for the distribution ofMn in a
generalized form. This expression is shown to also apply on self-similar structures. Then we
proceed to the next leading-order expansion for short time. In this regime, the first moment of
Mn scales as〈Mn〉 ∼ nνn whereνn is the effective instantaneous diffusion exponent, and tends
to νn → ν asn → ∞ (ν = 1

2 on regular lattices,ν = ln 2/ ln(d + 3) on thed-dimensional
Sierpínski gasket). We show numerical evidence that the effective instantaneous diffusion
exponentνn approaches the limiting valueν according toνn − ν ∼ n−ν . This result is valid
for both regular and self-similar lattices. We finally discuss this point in the context of other
problems of statistical physics.

First let us briefly recall the formulae for the maximal excursion of ad-dimensional

Brownian motionrt , that isMt = max(‖ru‖2, u 6 t), where‖r‖2 =
√∑

i r
2
i is the Euclidean

distance. The limit distribution is denoted byPd(a, t) = Pr{Mt < a}. The calculation goes
through the solution of the diffusion equation ind dimensions with spherical symmetry and
absorbing boundaries on the hypersphere of radiusa. LetU(r, t) be the probability density
function for the position vectorr of the walker relative to the origin at timet , without ever
crossing the hypersphere boundary at distancea. ThenU(r, t) satisfies the diffusion equation

∂tU(r, t) = 1

2d
∇2
rU(r, t) (1)

where∇2
r is thed-dimensional Laplace operator. The diffusion constant is set as 1/(2d) so

that the solution corresponds to a simple RW onZd with a timeτ between steps and a lattice
spacing

√
τ in the limit τ → 0. The boundary condition is thatU(r, t) = 0 for ‖r‖2 = a,

and the initial condition is

U(r, 0) = δ(r) = δ+(|r|)
Ad |r|d−1

whereAd is the surface area of the unit hypersphere ind dimensions andδ+ is the (one-sided)
delta function. The probability of remaining inside the hypersphere up to timet , Pd(a, t), is
the volume integral ofU(r, t) over the hypersphere. Due to spherical symmetry,U(r, t) is a
function ofr = ‖r‖2 only, which we now denote byU(r, t), so that, from (1)

∂tU(r, t) = 1

2drd−1
∂rr

d−1∂rU(r, t) (2)

with U(r, 0) = δ+(r)

Adrd−1 , U(a, t) = 0 and

Pd(a, t) =
∫ a

0
Adr

d−1U(r, t)dr.

The solution of (2) is given in the form of an infinite eigenfunction expansion. This calculation
can be done for self-similar lattices in the framework of the O’Shaughnessy–Procaccia
approximation [12]. It consists in assuming a spherical symmetry of a fractal object, and
in introducing an effective diffusion coefficientD = D0r

−2+1/ν computed from the solution of
the stationary diffusion problem on self-similar lattices without angular dependence. Thanks
to this approximation, an analytic approach can be pursued. The final distribution, denoted
Pd,ν for generalν, is obtained in the Laplace domain in closed form

Pd,ν(a, s) = 1

s

1− 21−dν

0(dν)

(4ν2D−1
0 a

1
ν s)

dν−1
2

Idν−1

(√
4ν2D−1

0 a
1
ν s

)
 . (3)
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Figure 1. Rescaled distribution of the maximum excursionPn(a/nν) versus the reduced variable
r/nν for n = 7500 (×) on the two-dimensional Sierpiński gasket, compared with the analytical
prediction (3), bold curve, and to the RSRG result, thin curve. Dotted curves:Pn(a/n

ν) for fixed
a and varyingn: the rightmost curve is computed fora = 25 while the leftmost curve corresponds
to a = 25 + 1. Inset A: difference between (3) and the RSRG prediction. Inset B:Pn(a/n

ν) for
n = 1000 (4) andn = 1500 (+). The curve forn = 7500= 5× 1500 (×) is exactly superposed
to the curve forn = 1500.

HereIn(x) is the modified Bessel function of ordern. From this formula all moments are
plainly computed:

〈Mk
t 〉d,ν =

{
2νk

0(kν + 1)

21−dν

0(dν)(4D−1
0 ν2)kν

∫ ∞
0

u(2k+d)ν−2

Idν−1(u)
du

}
tkν . (4)

PuttingD0 = 1/2d andν = 1
2 in (3), we easily recover the known distributions on regular

lattices in one [10], two [13] and three [2] dimensions. A similar method was used in [14] to
solve the FPT problem in the presence of a steady potential flow. It is worthwhile mentioning
that the limitd →∞ for ν = 1

2 in (3) yieldsP∞(a, s) = 1
s
(1− exp(−a2s)) to leading order.

Hence, as intuitively expected, the maximal excursion of a RW is exactly known in infinite
dimension and peaks ata = √t .

On self-similar lattices (ν 6= 1
2), equation (3) is only an estimate of the exact limit law. We

have compared distribution (3) with the distribution obtained by real space renormalization
group (RSRG) techniques for the two-dimensional Sierpiński gasket [15–17]. Both laws turn
out to approximate the exact distribution to the same order (see figure 1 and the discussion
in [18]). We have also evaluated the moments. To first order, they behave as〈Mk〉 ∼ nkν , so
we define thenormalizedmoments〈Mk〉 = 〈Mk

n〉/nkν which tend to a constant asymptotically.
The first two normalized moments obtained from (4),〈M〉 ' 1.20 and〈M2〉 ' 1.59, should
be compared with the moments obtained from the RSRG method (〈M〉 ' 1.19,〈M2〉 ' 1.57)
and with the numerical estimates (〈M〉 ' 1.28, 〈M2〉 ' 1.84). Both theoretical formulae
underestimate the actual values [18]. This can be understood as follows. Strictly speaking,
no limit distribution can be defined forMn but, for consecutive time seriesn, 5n, 52n, . . . ,
Pn(a/n

ν) is left invariant, because if a RW takesT steps to leave a triangle of sizeR, it
needs a time 5T to leave a triangle twice bigger. ThusPn(a) fulfils the scaling relation
Pn(a) = P5n(2a). However, between these times and for fixeda/nν , the rescaled distribution
Pn(a/n

ν) has a log-periodic variation. This log-periodic behaviour has been known for some
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time for lattice RWs [19]. Both function (3) and the RSRG result give the probability to stay
in the triangle of sizeR = 2i , that is one minus the probability to reach sites at distanceR + 1
from the origin. As observed in figure 1 this corresponds to an extremum in the oscillation of
Pn(a/n

ν) (leftmost dashed line of figure 1) rather than to an average.
Now we turn our attention to the convergence speed towards the asymptotic law (3).

For convenience we study the case of the discrete time RW on the lattice, where analytical
results can be obtained in one dimension and an exact numerical approach is possible in
higher dimensions. We focus on the instantaneous diffusion exponentνn which furnishes
information about the convergence speed of the moments. The numerical estimation ofν

using a Monte Carlo sampling can lead to false conclusions as in [20] (see [21]). Here we use
exact enumeration methods and therefore avoid such problems.

The exact solution of the problem in one dimension is obtained by solving the master
equation with absorbing boundaries at points±a with the use of a Fourier development
(obtained in [22] with a minor misprint), but the moments cannot be calculated in a
straightforward manner from this expression beyond first order. We derived another form
of the distribution by a recursive use of the reflection theorem. The probability density of the
maximal excursion at stepn reads

Pn(Mn = a) = 2
∞∑
k=0

(−1)k
[
pn((2k + 1)a) + pn((2k + 1)(a + 1)) + 2

2k∑
i=1

pn((2k + 1)a + i)

]
(5)

wherepn(x) is the probability density function for the discrete RW to be at positionx (which is
null for |x| > n). Formula (5) allows a convergent expansion of the first moments in powers of
n−1/2, which exist, sincePn(Mn = a) is an analytic function ofn1/2. At ordern−1/2, divergent
series are encountered which can be summed by classical methods [23], yielding

〈Mn〉 =
√
πn

2
− 1

2
+

1

12

√
2π

n
+O

(
1

n

)
(6)

〈M2
n〉 = 2Gn−

√
πn

2
+
G + 1

3
+O

(
1√
n

)
(7)

whereG = 0.9166. . . is the Catalan constant. In the calculation of the second cumulant the
terms of order

√
n and 1/

√
n cancel, as expected. The distributionPt(Mt = a) for continuous-

time RW (CTRW) follows plainly from (5) sincePt(Mt = a) = ∑
n Pn(Mn = a)5t(n),

where5t(n) is the probability for the CTRW to performn steps in timet . Numerically, a
series expansion similar to (7) is found for an exponential distribution of waiting times. The
exponential distribution is particular because it is the only one for which a master equation
formulation and a CTRW on the same lattice are isomorphic [24]. A striking feature of the
random variableM compared with other extremal quantities at finite times is that the leading
order expansion of〈Mk

n〉 scales asnk/2 + cte · n(k−1)/2 and not asnk/2 + cte · nk/2−1, hence
finite-size effects persist for a large number of steps.

In two dimensions, no exact result is available for finite times and the analyticity of the
probability densityPn(Mn = r) is not obvious. Hence we investigate this case numerically.
It is possible to perform an exact enumeration of the walks by studying the joint probability
density of the position and maximal excursionPn(x, y,M) on the square latticeZ2. We can
computePn(x, y,M) in the region 06 x 6 M, 0 6 y 6 x only, due to symmetries. We
use the family of metricsdp(x) = (

∑
i (|xi |p))1/p to compute the maximal excursion from

the origin of the lattice. In figure 2 we plot the instantaneous exponentνn with three classical
choices of metric:d1, d2 (Euclidean distance) andd∞ (max distance). The metricd1 andd∞
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Figure 2. Instantaneous exponentνn (averaged over two consecutive steps) versus number of steps
on the square lattice at two dimensions. Enumeration up to stepn = 400 in metricd1 (bold solid
curve) and metricd∞ (solid curve). The one-dimensional situation (caliper diameter) is given for
reference (dot-dashed curve).νn is also computed using the metricd2 (Euclidean distance, dashed
curve),d1.05 andd50 (solid curves).

both induce a strong overshooting ofνn with the limit value 1
2. The curves have the same

shape as that of the one-dimensional case, also plotted for reference in figure 2. The first
two moments have many features in common with their one-dimensional equivalents. For
example, using the metricd∞ we find that the series expansion〈Mk

n〉 =
∑∞

p=0m
k
k−p(
√
n)k−p

holds for both first and second moments up to third order, withm1
0 = −0.50,m1

−1 = 0.322
andm2

1 = −1.083,m2
0 = 0.95,m2

−1 = −0.33. The leading-order terms are exactly evaluated
from the asymptotic results and readm1

1 = 1.0830,m2
2 = 1.3048. In the Euclidean metricd2,

we find a drastic change in the shape of the curveνn (figure 2). The instantaneous exponent
approaches12 from belowand remains below12 at timen = 400. This phenomenon is a lattice
effect. We show this fact by computingνn in an off-lattice RW model (figure 3). Since it
is not possible to use exact enumeration techniques in this case, we resort to a Monte Carlo
simulation. We inspect 2×108 RWs with fixed distance increments and a uniform distribution
of the angles (Pearson walks [22]). In this situation,νn in metricd2 is very close to that obtained
in metricd1 andd∞, and itdecreasestowards1

2. Both lattice and off-lattice models should
give equivalent results once the discretization effects are smoothed out. Therefore,νn should
ultimately approach12 from above in the on-lattice model. We have investigated the change
of νn when varying continuously the metricdp with 16 p 6∞ on the lattice (figure 2). For
large enough values ofp (p > 50), we do observe that the curve crosses the value1

2. In the
metricd2, however, the time needed forνn to cross1

2 should be enormous.
This result shows that the definition of the metric strongly influences the convergence

properties of the maximal excursion on regular lattices. The two natural metrics for the square
lattice,d1 andd∞, lead to a behaviour similar to that observed in the continuum model.

On the Sierpínski gasket we enumerate the walks starting from the top of the biggest
triangle up to afixedtime. The metric chosen here is the chemical distance from the origin.
For each maximal excursionr we compute the probability of remaining belowr aftern steps,
P Sn (r). Unlike the transfer matrix method, this method works only at fixed time, but allows
us to discard the long transient regime and to compare the exact limit distribution with its
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Figure 3. Instantaneous exponentνn versus number of steps in the off-lattice model at two
dimensions. Monte Carlo simulation up to stepn = 100 in metricd1 (bold solid curve)d2 (dashed
curve), andd∞ (solid curve). The results for metricd1 andd∞ are almost indistinguishable, as
expected. Inset: log–log plot ofνn − ν which shows then−1/2 scaling.

Figure 4. Convergence of the instantaneous exponent for the first momentνn (bold curve) towards
the limit value ln 2/ ln 5 (dashed curve) on the two-dimensional Sierpiński gasket. The running
averageνn is also plotted (dashed bold curve). Inset: log–log plot ofνn − ν and fit (8).

spherically symmetric approximation. We have computed the instantaneous exponentνn up to
stepn = 104 on a gasket of size 256 (cf figure 4). Like the moments,νn displays a log-periodic
oscillation persisting in the long-time regime with an amplitude less than 8× 10−3. νn tends
to the asymptotic valueν = ln 2

ln 5 for long time. It seems that on a very general class of lattices
the finite-time behaviour ofνn and therefore of〈Mk

n〉 is an analytic function ofn−ν . This fact
lacks a clear physical understanding. The real space renormalization results do show thatnν is
the well-defined timescale for this problem but the exact evaluation of finite size effects is not
accessible from this method. To assess this hypothesis we have smoothed out the log-periodic
oscillations ofνn. For a log-periodic functionf (x) = f (T x), one can definez = ln(x) and
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f̃ (z) = f (x) so that the running logarithmic average reads

f

(
T x

2

)
= 1∫ z+lnT

z
du

∫ z+lnT

z

f̃ (u) du = 1∫ T x
x

dv
v

∫ T x

x

f (v)
dv

v
.

Using a discrete form of this average we write

ν 5n
2
= 1∑5n

i=n
1
i

5n∑
i=n

νi

i
.

We tried to fitνn using

νn = ν +An−ν +Bn−2ν + o(n−2ν) (8)

and we found a very good regression forA = 0.082± 0.002 andB = 0.18± 0.1. However,
the best fit with only one power law isν + cte· n−α with α = 0.49, so that, strictly speaking,
a nonanalytic short time dependence cannot be ruled out. The underlying assumption in
the computation ofνn is that the regular log-oscillatory pattern ofνn is additive. This
assumption does not hold because the averaged exponentνn still shows some oscillation.
The local exponentα fluctuates between 0.40 and 0.52, which does not allow us to confirm
unambiguously the hypothesis of the analytic behaviour ofνn as a function ofnν .

We would like to point out that in the context of lattice animals, the quantity〈Mk
n〉, or

equivalently the ‘caliper diameter’ (average spanning diameter of lattice animals once projected
on a fixed axis) displays a sub-leading order behaviour which scales asn(k−1)ν [4], aside from
the well known non-analytic subleading term, and can be interpreted as a ‘surface contribution’.
In the case of the maximal excursion of a RW, we have proved in one dimension and evidenced
through enumerations in higher dimensions that the early-time instantaneous exponentνn is
systematically above its limit valueν with a leading-order developmentνn ' ν +An−ν where
A depends on the precise choice of the metric. This result is consistent with the fact that the
corrective scaling to the moments due to finite-size effects includes only terms of the form
(n−ν)p, p ∈ N, which was proved in one dimension and which can also be interpreted as a
surface contribution.

In conclusion, besides its intrinsic interest, the maximal excursion of a RW shares
difficulties which are often encountered in physical problems dealing with finite-size series.
In certain cases, power-law exponents inferred from the finite-size series expansions should
be considered with caution, as might be the case for directed percolation series.
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